Aptitude:

Problems on trains important formulas:

  1. km/hr to m/s conversion:
    a km/hr = a x 5 m/s.
    18
  2. Time taken by a train of length l meters to pass a pole or standing man or a signal post is equal to the time taken by the train to cover l meters.
  3. Time taken by a train of length l meters to pass a stationery object of length b meters is the time taken by the train to cover (l + b) meters.
  4. Suppose two trains or two objects bodies are moving in the same direction at u m/s and v m/s, where u > v, then their relative speed is = (u – v) m/s.
  5. Suppose two trains or two objects bodies are moving in opposite directions at u m/s and v m/s, then their relative speed is = (u + v) m/s.
  6. If two trains (or bodies) start at the same time from points A and B towards each other and after crossing they take a and b sec in reaching B and A respectively, then:
    (A’s speed) : (B’s speed) = (b : a)

General Questions:

CLICK ON THE OPTIONS THEN YOU GET THE ANSWER OF THAT QUESTION

1.
A train running at the speed of 60 km/hr crosses a pole in 9 seconds. What is the length of the train?

A. 120 meters                      B.180 meters

C.324 meters                       D.150 meters

2.
A train 125 m long passes a man, running at 5 km/hr in the same direction in which the train is going, in 10 seconds. The speed of the train is:
A. 45 km/hr
B. 50 km/hr
C. 54 km/hr
D. 55 km/hr

3.
The length of the bridge, which a train 130 metres long and travelling at 45 km/hr can cross in 30 seconds, is:
A. 200 m
B. 225 m
C. 245 m
D. 250 m

4.
Two trains running in opposite directions cross a man standing on the platform in 27 seconds and 17 seconds respectively and they cross each other in 23 seconds. The ratio of their speeds is:
A. 1 : 3
B. 3 : 2
C. 3 : 4
D. None of these

5.
A train passes a station platform in 36 seconds and a man standing on the platform in 20 seconds. If the speed of the train is 54 km/hr, what is the length of the platform?
A. 120 m
B. 240 m
C. 300 m
D. None of these
Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s